
Safety-critical
Partitioned
Software
Architecture

A Partitioned
Software Architecture
for Robotic
Spacecraft

Gregory Horvath
Ferner Cilloniz-Bicchi

Seung Chung
Dan Dvorak
Dave Hecox

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA

2011 AIAA Infotech@Aerospace
Conference

March 31 2011

Copyright 2011 California Institute of Technology. Government Sponsorship acknowledged.

Wednesday, March 23, 2011

Motivations
Partitioned OS offers many appealing benefits

Memory protection (space partitioning)

Execution guarantees (time partitioning)

Mature standard with many examples of successful
application (ARINC 653)

Increased fault containment

How to best leverage these benefits throughout the
entire lifecycle while accommodating for and
adjusting to new constraints imposed by the platform

Wednesday, March 23, 2011

Approach
Identify relevant quality attributes of the resulting
architecture

Map quality attributes to lifecycle development activities

Identify key architectural features to support the desired
quality attributes

Provide artifacts to guarantee adherence to architecture

Modeling and analysis tools

Framework software

Development processes and procedures

Wednesday, March 23, 2011

Partitioned RTOS Basics
ARINC 653 and Time/Space Partitioning

Wednesday, March 23, 2011

Partitioned RTOS Basics
Recent interest in Partitioned RTOS Platforms provides a strong
starting point for a new approach to developing flight software

Space Partitioning: Applications runs in separate ‘brick-wall’
memory partitions, and communicate using statically-defined ports
and channels

Time Partitioning: Each partition is allocated processor time
according to a fixed schedule; each partition application runs
according to its own schedule.

The ‘partition’ concept establishes a computational unit suitable for
analysis of memory usage, scheduling, fault containment, and testing

Fault Containment: An errant process in one partition cannot
steal processor cycles or memory from another partition

Mixed-Criticality Software: Can mix safety-critical and lower-
criticality software on the same processing unit

Testing Benefits: Partitioning imposes structure that can simplify
testing and debugging procedures

Wednesday, March 23, 2011

ARINC 653 Standard
ARINC 653 is a language-independent standard published
by Aeronautical Radio, Inc (ARINC) that defines an
operational environment for Integrated Modular Avionics
(IMA)

The standard additionally specifies an Application Executive
(ApEx) which serves as the interface between the platform
OS and the application software

Defines services for

process and partition scheduling

inter- and intra-partition communication

status reporting

multi-layered, integrated health management

Wednesday, March 23, 2011

Quality Attributes

Wednesday, March 23, 2011

Quality Attributes

Reliability

TestabilityModifiability

Reusability

Wednesday, March 23, 2011

Quality Attributes
Quality attributes, or QAs, are non-functional
requirements on a system.

QAs can capture run-time or static properties,
business requirements, etc.

Partitioned software architectures are uniquely able to
support and enhance the following QAs

Reusability

Modifiability

Testability

Reliability

Wednesday, March 23, 2011

QA: Reusability
Improve Reusability
through well defined interface specification

Design modularly with well defined interface
specifications

Design with ‘plug-n-play’ paradigm

ARINC 653 Ports and Channels

Port data specification

Queueing Port size specification

Sampling Port timing specification

Port read/write timing specification

Port connecting Channel specification

Wednesday, March 23, 2011

QA: Reusability
Improve Reusability
through well defined interface specification

Design modularly with well defined interface
specifications

Design with ‘plug-n-play’ paradigm

ARINC 653 Ports and Channels

Port data specification

Queueing Port size specification

Sampling Port timing specification

Port read/write timing specification

Port connecting Channel specification

Wednesday, March 23, 2011

QA: Modifiability
Improve Modifiability
through function composition

Change desired/required functionalities

Change the grouping of functionalities based on the
concerns (e.g. safety, timing, etc.)

ARINC 653 Partitions and Processes

Regroup Processes into the appropriate Partitions

Update the Ports of the Partitions

Update the Channels that connect the Ports of the
Partitions

Wednesday, March 23, 2011

QA: Modifiability
Improve Modifiability
through function composition

Change desired/required functionalities

Change the grouping of functionalities based on the
concerns (e.g. safety, timing, etc.)

ARINC 653 Partitions and Processes

Regroup Processes into the appropriate Partitions

Update the Ports of the Partitions

Update the Channels that connect the Ports of the
Partitions

Wednesday, March 23, 2011

QA: Testability
Improve Testability
through simplified integration and test

Test each component in isolation

Test components at varying levels of integration

Test critical components at a higher certification level

ARINC 653 Partitions

Test each Partition in isolation

Test the interactions of Partitions

Test critical Partitions at a higher certification level

Wednesday, March 23, 2011

QA: Testability
Improve Testability
through simplified integration and test

Test each component in isolation

Test components at varying levels of integration

Test critical components at a higher certification level

ARINC 653 Partitions

Test each Partition in isolation

Test the interactions of Partitions

Test critical Partitions at a higher certification level

Wednesday, March 23, 2011

QA: Reliability
Improve Reliability through isolation

Isolate independent functionalities

Isolate critical functionalities/Isolate less mature
functionalities

Isolate the faults of a function

ARINC 653 Partitions

Isolate the memory that can be physically used by a
Partition

Isolate the time that can be taken up by a Partition

Overall improvement to fault isolation through time
and space partitioning

Wednesday, March 23, 2011

QA: Reliability
Improve Reliability through isolation

Isolate independent functionalities

Isolate critical functionalities/Isolate less mature
functionalities

Isolate the faults of a function

ARINC 653 Partitions

Isolate the memory that can be physically used by a
Partition

Isolate the time that can be taken up by a Partition

Overall improvement to fault isolation through time
and space partitioning

Wednesday, March 23, 2011

Mapping Quality Attributes
to Lifecycle Benefits

Wednesday, March 23, 2011

Mapping Quality Attributes
to Lifecycle Benefits

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Quality Attributes in Practice

We’ve defined the qualities that we’d like our systems
to embody. Now you may ask:

How do we use this information to build robust
systems?

How do these QAs help us build reliable systems?

How are these QAs expressed during design and
construction?

We’ll also touch on supporting elements that can help
to ensure adherence to these QAs

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability ReliabilityR biliR bilit

Reusability during
Design

Common Problems:
Design decision to create new or reuse software components

Create reusable software components:
Typically minimal or no consideration is made in creating a reusable software
components.

Reuse existing software components:
Typically the difficulty of reusing existing software components is largely yp y
underestimated.

Concerns:
Difficulty of creating reusable software and Uncertainties associated with reusing software

Interoperability uncertainty:
Software components are typically designed with their own specific interface and
behavior specifications that are generally poorly documented. Thus, the interoperability p g y p y
of the existing software components with the new components is uncertain.

Cost & Schedule uncertainty:
Due to the uncertainty of the interface and behavior specifications of the existing y p g
software components, the cost and the schedule associated with interfacing with the
existing software component is difficult to predict.

Wednesday, March 23, 2011

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability ReliabilityR biliR bilit

Reusability during
Design

For Partitioned OS:

Create reusable software components:
New software component is built in a partition, with specific ports and timing requirements.

Reuse existing software components:g p
This software component can be reused as was designed as long as the port and the timing
requirements are satisfied.

Benefits provided by Partitioned OS:

Mitigate interoperability uncertainty:
Partition interoperability is well defined by the port and timing specifications.

Inter-partition communication occurs over statically-defined channels

Strong interface specification minimizes the possibility of runtime errors introduced by improper
communication among various tasks within the system.

Statically defined communication channels and data types allow for data flow and schedulability y
analysis before application is ever executed.

Mitigate cost & schedule uncertainty:
Well defined interface and timing specifications lead to more predictable reuse costing and scheduling.

Required time allocation:
During the design time, the time allocations can be scheduled statically.

Required I/O ports:q p
Design the port and channel configuration and memory allocations statically.

Wednesday, March 23, 2011

Modifiability during
Development

Common Problems:
Changes in the requirements, design, schedule, budget, etc.

Addition or Removal of features:
Tightly coupled applications with brittle or weak interfaces make
modification of functionality a tedious and error-prone process

Redistribution/refactoring of features:
This is a unique challenge associated with developing partitioned
applications. Namely, how do we handle the scenario where we decide that
our partitioning must be modified?

Concerns:
Uncertainties due to design and development changes

Integrity uncertainty:
Adding or removing features can affect other parts of the software and
determining the extent of the effects can be challenging.

Cost & Schedule uncertainty:
With the uncertainty in the effect of the changes, the development cost and
schedule also becomes uncertain.

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Modifiability during
Development

For Partitioned OS:

Addition or Removal of features:
Add and Remove features by adding or removing partitions or processes.

Redistribution of features:
Redistribute features by splitting or combining partitions.

Benefits provided by Partitioned OS:

Mitigate integrity uncertainty:
Making changes to the relevant partitions in isolation does not affect other g
partitions.

Mitigate cost and schedule uncertainty:
Isolating the changes and knowing how the interfaces must change accordingly g g g
leads to predictable cost and schedule.

Number of new partitions to be added:
Change memory and time allocation. For removed partitions, simply remove the
allocated memory and time.

Number of ports and channels to change:p g
Change the port and channel configuration and memory allocations.

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Testability during
I&T

Common Problems:
Rolling up many features into one large delivery

‘Big bang’ integration:
Many problems are caught during this integration step, and such problems
may lead to late feature changes.

Testing fully integrated deliveries:
Debugging a fully integrated software can be exponentially more difficult.
Though very difficult, such integrated test is required since one part of the
code can inadvertently affect other parts of the code.

Concerns:
Uncertainties due to the integration process and integrated software complexity

Testing completeness uncertainty:
For fully integrated software, identifying all important test cases is
impossible.

Cost and Schedule uncertainty:
Much of the cost and schedule overrun occur during integration and testing
phase.

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Testability during
I&T

For Partitioned OS:

‘Big bang’ integration:
Integrate partitions as they become available.

Testing fully integrated deliveries:
Test partially integrated partitions based on their interface specification and other stub partitions.

Benefits provided by Partitioned OS:

Mitigate testing completeness uncertainty:
Identifying the important test cases becomes much easier.

Test cases for each independent partitions

Test cases based on the coupling of the partitions, i.e. ports and channels are the only p g
potential coupling among partitions.

Mitigate cost and schedule uncertainty:g y
The complexity of partition coupling can help predict the cost and schedule associated with
integration and testing.

Number of independent groups of partitions:
Test each independent groups of partitions in isolation.

Number of connections among interdependent partitions:
The number of required test cases increase at least exponentially with the number of
connections.

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Reliability during
Operation

Common Problems:
Faults occurring during operations

Fault isolation:
A fault in one software component may corrupt the memory region of other
software components and steal processing times from others.

Fault recovery:
Fault must be handled in a timely manner to assure mission success.

Concerns:
Lack of robust fault isolation and recover may risk the safety and reduce productivity

Fault propagation:
Fault must be isolated and prevent it from causing a chain reaction of faults.

Lack of robustness:
Fault recover software may also be affected by other faulty software
components.

Reduced productivity and functionality:
Less mature, but more advance algorithms are not allowed on board due to
potential risk on critical components.

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Reliability during
Operation

For Partitioned OS:

Fault isolation:
Only way for faults to propagate from one partition to another is through the ports and
channels. The memory and processing time of a partition is not affected by another faulty
partition.

Fault recovery:
Built-in health monitoring enables more robust software health management techniques.

Benefits provided by Partitioned OS:

Mitigate fault propagation:g p p g
Only way for faults to propagate from one partition to another is through the ports and
channels.

Decreased susceptibility to problems arising in non-critical tasks (i.e. SEUs...)

The core functionality is protected against latent errors in less mature application code.

Improve robustness:
Eases implementation of the ‘simplified backup’ strategy for achieving redundancy within
the application.

Improve productivity and functionality:
Integration of advanced on-board algorithms with reduced concern for the safety of the g
system.

Design Develop
Integrate

&
Test

Operate

Reusability Modifiability Testability Reliability

Wednesday, March 23, 2011

Demonstrations

M
a
tl
a
b
/S

im
u
lin

k

2-D Inverted Pendulum

TCP/IP

Server

Year One FSTL Demo

Part. OS Part. OS Part. OS Part. OS

Core OS

Inverted

Pendulum

Controller

Simulation

Interface
User

Interface

Non-critical

Processes

Safety & Time

Critical

Safety & Time

Critical

S S

TCP Client ttnnntt t

Commercial Single Board Computer

Part. OS Part. OS Part. OS Part. OS

Driver2

1553 BC

Driver Driver1

Non-critical

Processes

Peripheral Hardware

1553

BC

RT RT

Core OS

…

Year Two Flight-Like Demo

Prototype Flight Single Board Computer

Wednesday, March 23, 2011

What’s
Left?

Wednesday, March 23, 2011

This is all great, but...
There is still work to be done before projects can effectively deploy software systems
based on a partitioned OS

Process and Procedures

Software classification: need to unambiguously define the classification level of
each function within the flight software application

Roles and responsibilities: Who is responsible for maintaining the system
configuration? Who allocates memory and CPU time to each module?

Tools

System modeling and specification

Graphical system design, configuration file generation, some basic code
generation

Data flow and schedulability analysis + simulation

System Characterization

Performance analysis (CPU/memory utilization, data throughput)

Framework Software

Promote reusability through useful abstractions

Codify useful design patterns for partitioned applications to ensure adherence to
underlying architecture

Wednesday, March 23, 2011

Looking Further
This work has only considered changes to the software system design

Even greater robustness can be achieved by considering alternative
avionics architectures

ARINC 659 (Backplane Data Bus for IMA)

Time-Triggered Bus Architectures

Passenger airframe style redundancy and voting (7E7)

...

Future system designs should consider avionics trades within this space
for greater benefits

Related topic: stepping stone to multicore

How does the partitioned application paradigm map to multicore
applications?

If the similarity is more than just conceptual, we can carry over many
of the analysis techniques, tools, and processes for partitioned
applications as we migrate to multicore solutions

Wednesday, March 23, 2011

